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Abstract 

The paper is divided into two parts. The first part is a detailed review of the topological 
background to the theory of  spinor structures on space-times, including proofs of  most 
of the main results. The second part is a contination of the analysis in the second paper 
of  this series of the cobordism theory of compact, closed, orientable space-time mani- 
folds. A new cobordism relation is defined: linear spin cobordism and the linear spin 
cobordism of space-time manifolds calculated. 

1. Introduction 

This article is intended mainly as a detailed review of the topological back- 
ground of the theory of spinor structures on space-time manifolds. I also 
report on some very recent work of Koschorke (1974) on the bordism of 
tangent line bundles which provides the answer to a question I posed 
(Whiston, 1974) concerning the cobordism of Lorentzian structures on 
compact space-times. These results have relevance to the geometry of space- 
times because of Steenrod's famous theorem on the correspondence between 
Lorentzian structures and tangent line bundles on manifolds. It turns out 
that any two Lorentzian structures on a ~ven compact, closed, orientable 
four manifold are cobordant, moreover two Lorentzian structures on different 
closed, compact manifolds are cobordant iff the two manifolds are cobordant 
in the oriented sense. Therefore the bordism classification of Lorentzian 
structures is essentially trivial. In general, there are an infinite number of  
homotopy classes of tangent line bundles on a four-manifold (of Euler num- 
ber zero if it is compact). By introducing a more refined definition: con- 
cordance of tangent line bundles (asking for a homotopy through tangent 
line bundles) Koschorke showed that there can be but a finite number of 
concordance classes, the number depending upon the ;Y2-dimension of the 
7/2-linear space  H I ( x ,  •2). Below I define a new cobordism relation: linear 
spin cobordism between closed, compact spin-manifolds and obtain the 
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following generalisation of results in (Whiston, 1974). Two compact, closed, 
spinor space-time manifolds X~o 'sl and X'~ 's~ with sig(X~o ) = sig(X1 +) are 
cobordant through a spin bordism of their tangent bundles: there is a com- 
pact five-dimensional spin-manifold Z +'s with oriented boundary X g U X  1 
and a tangent four-plane bundle z 1 on Z with a spin-structure on its principal 
SO(4) bundle which restricts to the tangent bundles of X~" and Xi- inducing 
the preassigned spin-structures (arising from the restriction of the spinor- 
structures to Spin (3). 

The main review is divided into six sections. In the first two sections I 
present some background material on the Lorentz groups and their associated 
Clifford algebras and spinor groups, including an analysis of the pseudo- 
projective spaces and a few lemmas on the topology of the Lorentz and spinor 
groups. In the next two sections I discuss the theory of Lorentzian structures 
and spinor structures on four-manifolds in terms of homotopy theory and 
cohomology theory, the former being especially suited for interpretation 
through the Aharanov-Susskind gedanken experiment. The last two sections 
are concerned with the topology of spinor space-times. Geroch's (1968) 
theorem on the paralMisability of non-compact spinor space.times is com- 
pared with some of Rohlin's (1 958) classic results on four-dimensional spin- 
manifolds and, in the last section, I define linear spin cobordism and compute 
the linear spin cobordism of compact spinor space-times. 

2. Spin and Spinor Structures 

2.1. The Lorentz Groups 
Minkowski space will be denoted by N 1'3 and represents the vector 

space I~ 4 with the indefinite non-degenerate bilinear form (,) of signature 
( t ,  3). The Lorentz group L = O(1,3) is the group of orthogonal automorphisms 
of N1,3 and its invariant subgroups include the proper Lorentz group L÷ of 
orientation preserving automorphisms of NI,3 and the proper orthochronous 
Lorentz group L*+ of automorphisms preserving the semi-orentations of 
R 1'° and IR °'3. The latter two groups will be denoted by SO(l,  3) and 
SO+(1,3) respectively. The unit timelike pseudosphere of ~1,3 denoted by 
TS 1,3 is defined as the set of all x in R 1,3 with (x, x)  = 1 ; the unit space- 

13 like pseudosphere of R 1'3 is denoted by SS ' and is defined as the set of 
all x in ~1,3 with (x, x )=  -1  and i fS 3 as usual denoted the unit positive 
definite sphere in [~4, the unit null pseudosphere in N 1'3 is denoted by NS ~,3 
and is defined as the intersection of the non-zero null vectors in NI,3 with 
S 3. In direct analogy to the projective space NP 3 of lines in IR 4 we define 
the projective spaces of timelike, space-like or null lines in E 1'3 denoted 
respectively by TPN 1'3, SPN 1'3 and NPR 1'3. These are isomorphic respectively 
to TS1'3/77 2, SS1'3/772 and NS 1'3/77 2 where 77 2 is the central subgroup of 
O(1,3). The pseudospheres are supposed to carry the relative topologies as 
subspaces of R 4 and are diffeomorphic to respectively N 3 x S °, S 2 x ~ and 
S 2 x S O under the maps f)r: (x, x) w->(x, x/Ixl), f~ 1 : (x, e)F-~(e(1 + x2) 1/2 , x); 
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f s : ( X ,  x)~-*(x/ll x II, x), ~ I  : (x, t)t--+(t, X(1 + t2) l/z) and fN:  (x, x) V--+ 
(x/ l lx  II, x/I x I), f~ l  : (x, e)v-~(e II x II, x). The projective spaces have the 
identification topologies. The following lemma will be useful later on. The 
three-dimensional cross-cap (without boundary) is defined as the cylinder 
S 2 x [0, 1 ] with antipodal points identified in S 2 x O. 

Lemma 1. TPR 1'3 ~i IR3,NpR1,3 _~ S 2 and S P R  1'3 is a three-dimensional 
cross-cap without boundary. 

Proof. There are imbeddings TPR 1,3, S P ~  1,3 and N P R  1,3 ~ R P  3 defined 
by projecting the two representative points of either a time-like, space-like 
or null line onto the two points of intersection of the line with S 3. For 
example, in Fig. 1, the time-like line represented by the two points A, B, of 
intersection with TS 1,3 is represented in RP 3 by the two points A', B'  of 

A ' ~ S 1 , 3  

'(///Uss,,3 \ \ ) '  
Figure 1. 

TS1,3 

/ ~ - - S . .  SPN 1,3 

I tli = ~ ! 1  1,3 

t i t ,  ............... .2;I 
\ \~'~ NP,~ 1,3 

Rp 3 

Figure 2. 

intersection of the line with S 3. In this way, if we represent Np3 as a solid 
three disc of unit radius with antipodal points identified in the boundary S 2, 1 13 it is immediate that TPR 1'~ is imbedded as the open disc of radius ~, N P N  ' 
is imbedded as the two-sphere of radius ½ and S P R  1"3 as the boundaryless 
three-dimensional cross-cap. (The interesting point about this is that the time- 
like projective space is contractible whilst the spaces SPg~ 1'3 and N P R  1'3 
are not; SPN 1'3 is obviously homotopy equivalent to the space IRP 2.) 

2.2. Spinor Groups 

The spinor groups associated with the Lorentz groups are subgroups of the 
group of units of the universal Clifford algebra of the pseudo-orthogonal 
space R 1'3 denoted by N1,3 (Porteous, 1969). Rl,3 is isomorphic to the 1,3 2 quotient of the tensor algebra of R modulus the relation x = - ( x ,  x) for 
x E R 1,3. Because the tensor algebra is Z2-graded into tensors of even or 
odd degree, so is ~1,3 and its components are ~°,3 and Nl,3. It can be 
shown that ~ 1,3 is isomorphic to the algebra of endomorphisms of the two- 
dimensional quaternionic vector space H 2 : End ~ (H 2) (H for Hamilton, 
denotes the division ring of quaternions). Because of this, H 2 is called the 
spinor space of Nl,a. The subalgebra R°,3 can be shown to be isomorphic to 
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R l, 2 which is itself isomorphic to the endomorphism algebra Endc(C2). 
The latter space is the spinor space used in physics (for a reason which will 
become clear later in this section). The Clifford group 17(1,3) of R 1,3 is 
defined as a certain subgroup of the group of units of ~ 1 3 and has the index 
two invariant subgroup F°(1,3) defined as F(1,3) ¢q R ° 3- There is a group 
epimorphism p : P(t ,  3 ) ~  O(1,3) defined b_Ylregarding ~ 1,3 as a linear sub- 
space of R1,3 and writing p(g) : x ~'@. x .  g -  for g E P(1,3) and x E N 1,3. 
The kernel ofp  is isomorphic to the group GL(1)of non-zero real numbers 
which contains the subgroup of non-zero positive numbers GL÷(1). The quotient 
group !7(1,3)/GL÷(1) is denoted by Pin(l, 3) and there is an obvious epimor- 
phism Pin(l, 3) -+ 0 ( 1 , 3 )  with kernel 772 generated by the coset o f - 1  C GL(1). 
It is therefore cl'ear that Pin(l, 3) is a Lie group and that Pin (1,3) ~ O(1,3) is a 
two-fold covering space. The subgroup 17°(1, 3)/GL+(1) of Hn(1, 3) is 
invariant of index two and is called Spin(l, 3). The restriction of the 
epimorphism p : Pin(l, 3) -+ O(1,3) sends Spin(t, 3) onto SO(l, 3). By 
defining a 'norm' homomorphism N: NI, a ~ ~, N: x ~+ x.  ~, one can show 
that Pin(l, 3) and Spin(l, 3) are isomorphic to the subgroups ker( IN [) of 
I'(1,3) respectively P°(1, 3). The group Spin÷(1, 3) is defined as ker(N) and 
is an index two invariant subgroup of Spin(l, 3). Spin+ 0 ,  3) is the com- 
ponent of the identity of Pin(l, 3) and is therefore mapped onto the com- 
ponent of the identity SO+O, 3) by the projection p. Because R ° 3 is iso- 
morphic to End c ( C ) ,  Spin +(1,3) maps isomorphically onto SL'(2, C ). This 
is why C 2 is called spinor space by physicists. 

We shall need to consider the orthogonal inclusion R °, 3 _+ •1, 3 which 
induces an algebra homomorphism ~o, 3 "+ Nl, 3 preserving 72-degree, 
Ro °, 3 -+ R °, 3. The algebra homomorphism induces a monomorphism 
Spin(0, 3)"+ Spin+0,3). Because there are isomorphisms Ro °, 3 = R° o, 
Spin(0, 3) ~- Spin(3, 0) := Spin(3). There is an analogous epimorphism 
p' : Spin(3) ~ SO(3) with kernel 77 2 such that the following diagram 
commutes: 

inc. p' 
;72 , , Spin(0, 3) 7> SO(3) 

(*) It j, t ~° J [m° 
Z 2 , , Spin+(1,3) .~> SO+(1,3) 

inc. p 

Because ~o ° 3 ~ R° o ~ ~2, o ~ H, Spin(0, 3) can be identified with the 
group Sp(1 } of unit'quaternions. Therefore Spin(0, 3) is topologically S 3. 
(Note that the group SU(2) is isomorphic to Sp(1).) We shall need the 
following lemmas on the topology of the Lorentz and spinor groups. 

Lemma 2. SO+(1, 3) ----- SO(3) x R 3, Spin+(1, 3) ~ Spin(3) x R 3 and 
SO(3) ~ RP 3. 

Proof (a) Consider the principal SO(3)-bundle defined by the projection 
SO÷(1,3) ~ SO÷(1,3)/S0(3). Because SO÷0, 3) acts transitively on TSI+ ' 3 
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with stability group SO(3), SO+(1,3)/S0(3) -~ TSI+ ' 3 _~ R 3  Therefore since 
R 3 is contractible, the principal bundle is trivial: SO+(1,3) ~ SO(3) x R 3. 
(b) Because Spin+(1,3) is the simply connected two-fold cover of SO+(1, 3) 
it must be isomorphic to the simply connected two-fold cover of  SO(3) x ~3 
which is Spin(3) x R 3. (c) SO(3) --- Spin(3)/77 2 --- $3/Z2 = RP 3. 

Lemma 3. The homotopy group rr a (SO(3), e) is generated over 7/2 by 
the homotopy class of any parameterised rotation through 2rr about any 
axis regarded as a loop a : (S 1, e) -+ (SO(3), e). 

Proof  Because Spin(3)-+ SO(3) is a two-fold covering space of SO(3) and 
Spin(3) is simply connected, 7rl(SO(3), e) is isomorphic to the deck group 7/2 
generated by the antipodal map x: I-+ - x  on Spin(3). The isomorphism is 
induced by sending the antipodal map onto the homotopy class of tile loop 
pow where w is any path in Spin(3) from e to -e .  But such a path is 
represented by any map of the form (say) w : t ~ cos(m) + i sin(m) for 
0 ~< t ~< 1 (we regard Spin(3) as Sp(1) and R3C H as the space of purely 
imaginary quaternions). The loop pow defines a parameterised rotation 
through 2rr about the x-axis in R 3. 

Corollary. rr 1 (SO+O, 3), e) is generated by the homotopy class of any 
parameterised rotation through 27r in R °, 3. 

Proof. It follows from Lemma 2 that the inclusion homomorphism 

SO(3) ~ SO+(1,3) is a homotopy equivalence. Therefore the induced 
homotopy homomorphism J ,  : 7r~(SO(3), e) -+ 7ri(SO+(1 , 3), e) is an iso- 
morphism. 

Lemma three and its corollary are vital for an understanding of the inter- 
pretation of spinor structures on space-times from the homotopy point of 
view. 

2.3. Lorentzian Structures 

If X is a four-manifold, its tangent bundle will be denoted by t X = 7rx: 
T(X) -+ X. The principal frame bundle of t X will be called the Einstein 
bundle of  X and written GL(4)(X), where GL(4) is, in this context, the 
Einstein group. We shall need the notion of homomorphism of principal 
bundles. Suppose that b~ = Pl : E1 ~ X and that b2 = P2 : E2 ~ X are 
principal G 1 respectively G 2 bundles over X where G1 and G2 are Lie groups 
with actions a 1 : E 1 x G 1 -+ E 1 respectively a s : E 2 x G2 -> E2. Then a 
principal bundle homomorphism f :  b 1 ~ b2 is defined by a homo- 
morphism f l  : GI ~ G2 and a smooth map f2 : El ~ E2 such that the follow- 

~ × ~  

ing diagram commutes: 

E1 G1 a~ E x > 1 

E 2 x G 2 + E 2 
a2 
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I f  f l  is a smooth subgroup monomorphism and f2 a smooth submanifold then 
the homomorphism is called a smooth reduction of the structural group G 2 
to G 1 . If  f l  is a smooth epimorphism and f2 is a fibration, then f is called a 
smooth extension of the structural group G2 of b2 to G1 (in this case, G 1 is a 
group extension of G 2 by ker(fl)). 

A Lorentzian structure on a four-manifold X is a reduction of the Einstein 
group GL(4) of the principal frame bundle of X to the Lorentz group 0(1, 3). 
Such a reduction is possible iff there exists a smooth global section of the 
fibre bundle GL(4)/O(1, 3)(X) with fibre GL(4)/O(I, 3) associated with the 
Einstein bundle. But the space GL(4)/O(1, 3) is in one-to-one correspondence 
with the Lorentz signature bilinear forms on R 4. Therefore a Lorentzian 
structure on X: the smooth assignment of  the inertial frames in the Einstein 
bundle is equivalent to finding a smooth Lorentz tensor on X or putting a 
smooth R 1, 3-structure on each tangent space of  X. Any four-manifold 
admitting a smooth Lorentzian structure is called a space-time. Steenrod's 
(1951) theorem sets up a one-to-one correspondence between Lorentzian 
structures on a manifold and tangent line-bundles. The correspondence is 
obtainable in the following way. Suppose that X admits a Lorentzian structure. 
Then we may form the associated bundle of  time-like one-dimensional sub- 
spaces of  tx  with fibre TPR 1, 3. But we have already noted that TPR 1, 3 is 
contractible. Thus by a standard result in the theory of fibre bundles 
(Husemoller, 1966) there is a global section of the TPR 1, 3 bundle and hence 
a smooth (time-like) tangent line-bundle on X. Conversely, because 
RP a ~ O(4)/O(1) x 0(3) and 0(4)is  a subgroup of GL(4) and 0(1 ) x 0(3) 
= 0(4) (~ O(1, 3) is a subgroup of 0(1 ,3) ,  RP 3 is a subspace of GL(4)/O(1, 3). 
Hence a global section of the projective bundle of  tx: a tangent line-bundle 
defines a section of the bundle GL(4)/O(1, 3)(X) and therefore a Lorentzian 
structure on X. A slight extension of the Poincar~-Hopf theorem (a compact 
manifold admits a tangent line-bundle iff it has Euler number zero) gives the 
welt-known result that a compact closed four-manifold can admit a Lorentzian 
structure iff it has Euler number zero. Any non-compact four-manifold admits 
a tangent line-bundle and therefore a Lorentzian structure. A Lorentzian 
structure is called orientable iff its structural group O(1,3)  reduces to the 
SO(l ,  3). It is clear that such a reduction can be performed i f fX  is an orien- 
table four-manifold. A Lorentzian structure is called time-orientable iffi ts 
structural group reduces to the orthochronous Lorentz group L t  of ortho- 
gonal automorphisms of R 1,3 which preserve the orientation of N 1,o. Such a 
reduction can be performed iff there is a lifting of the section of the TP R 1,3- 
bundle to its two-fold cover the TS1,3-bundle or iff the two-fold covering space 
NS a,3(X )_~NP R 1,3(X ) is trivial. Lastly a Lorentzian structure is called space and 
time orientable iffits structural group reduces to the group SO+(1,3), i f fX  is 
orientable and time-orientable. (In this case if e~ is the trivial line-bundle 
induced by the reduction to L, and ~ is the complementary spaceqike three- 
plane bundle with t x = e I • ~7, r~ is an orientable vector bundle.) The 
structural group S O + 0 , 3 )  of a space and time-orientable space-time always 
further reduces to SO(3) the structural group o f t  because SO+0,  3)/S0(3) 
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is contractible. This is important in the following because one can always 
replace the group SO+0 ,3 )  by SO(3) in the calculations and use well- 
known results on SO(3)-bundles. 
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2.4. Spinor-Structures 

A spinor-structure over a Lorentzian structure on a space-time X is an extension 
of the Lorentz structural group to a spinor group. That is of O(1, 3), SO(l, 3) 
or SO+(1, 3) to respectively Pin(l, 3), Spin(l, 3) or Spin+(1, 3). From our 
earlier definition of the extension of a structural group, it follows that one 
can find such an extension iff there exists a principal spin-bundle and a two- 
fold covering map from the spin-bundle onto the Lorentz bundle such that 
the restriction of the covering to each fibre of the spin-bundle over X coincides 
with the two-fold covering map Pin(l, 3) --> O(1, 3) respectively Spin(l, 3) 
SO(l, 3) or Spin+(1,3) --> SO+(t, 3). Such a covering of  the Lorentz bundle 
is called a spin-structure on X. The associated spinor-bundles are defined via 
the representations of Pin(l, 3) in H 2 and Spin(l, 3) or Spin+(1, 3) in C 2. 
Local sections of either the symplectic two-plane bundle or the complex two- 
plane bundle of a spinor space-time are called spinor fields on X. Their 
physical interpretation is in terms of the wave-functions of spin ~ fermions: 
neutrinos, electrons, kaons . . . .  

For a paracompact manifold X there is a one-to-one correspondence between 
the set of isomorphism classes of  O(n)-bundles on X and homotopy classes 
of maps into a universal classifying space for O(n)-bundles BO(n) (the direct 
limit of Grassmannians Gn (R n+s) over s). The correspondence is [X, BO(n)] * 
-+ isomorphism classes of principal O(n)-bundles on X;i f l ~ f * ( b n )  the pull- 
back along f : X - +  BO(n) of the universal principal O(n) bundle b n over 
BO(n) (the direct limit of the principal O(n)-bundles SVn(R n+s) -+ Gn(R n+s) 
over s). At this point we shall only be interested in BO(1) = B~ z. Then there 
is a one-to-one correspondence between the equivalence classes of  two-fold 
coverings of  X and the homotopy set [X, BZ2]. It can be shown that B?/2 is 
an Eilenberg-MacLane space (Spaniel 1956) of  type K(7: 2, 1), that is 
1rq(B~_2) ~ Z 2 i fq  = 1 or 0 otherwise. Thus the set [X, BZ2] is isomorphic 
with IX, K(~ 2, 1)]. But the latter set is the generalised cohomology group 
Hi(X,  K~Z2) of X in the spectrum ~ 2 (Hilton, 1971). The Eilenberg-Steenrod 
theorem shows that the former cohomology group is isomorphic to the usual 
singular mod(2) group. The correspondence can be regarded as sending a 
principal ~ 2"bundle into its first Stiefel-Whitney class. One can also find 
a one-to-one correspondence between principal 7:2-bundles over a con- 
nected space X and the group lrl(X, Xo)$ 7/2 ofhomomorphisms of the 
(non-abelian in general) group 7r 1 (X, Xo) into Z 2- Suppose that a 7/2-bundle 
over X is classified by a map f :  (X, xo) -+ (BT/2,f(xo)). Then there is an 
induced homotopy homomorphism f , :  7r 1 (X, Xo) -+ 7r t (B :¢ 2, f(X o)) ~ 7: 2. 
If w E 7r 1 (X, Xo) is the homotopy class of a loop w : (S 1, e) -+ (X, Xo) in X at 
Xo, then f , ( I  w 1) = Ifow I which is the class of the loopfow inBZ2 at 
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f(xo)..low is the classifying map of the principal Z 2-bundle w*(f*(b 1)) 
on S 1 which is the pull-back to S 1 along w of the principal 2~2-bundle f*(b 5) 
on X. Therefore f*(bs) is trivial if it is trivial along any imbedded circle in 
X and is non-trivial iff there is an imbedded circle along which it is the non- 
trivial two-fold cover of S 1. Equivalently the homomorphism associated with 
principal Z2-bundle on a connected X assigns the value 1 to a loop in X based 
at some Xo if the loop lifts to a loop in the covering space and - t  to a loop 
that lifts to an open path in the covering space (Corresponding to the permuta- 
tion of the fibre over x0 induced by the unique lift of the loop from a point 
in the fibre: either the identity permutation or the interchange permutation.) 
Finally the first Stiefel-Whitney class of a principal 2~2-bundle over a space 
X is defined as follows. The cohomology algebra H*(B~_ 2, Z2) is the poly- 
nomial algebra on the universal Stiefel-Whitney class W 1 the generator of 
H 5 (BT/2, 2~ 2). I f f :  X -+ B 2~ 2 is the classifying map of a principal 22-bundle 
on X, then the class f*(W1) @ H (X,)72) is the first Stiefel-Whitney class of 
f*(b 5) which is trivial iff the bundle is trivial. 

Because a spin-structure on a space-time is a certain two-fold over of the 
Lorentz bundle, one can formulate the following definition of a spinor- 
structure (MiNor, 1963). A spinor-structure on X is a cohomology class 
S EHt(L(X), g2) (where L(X) is the Lorentz bundle of X) such that for any 
x EX, the fibre inclusion ix: Lx -+L(X) via/*: HI(L(X), Y_2)-~HI(Lx, -g2) 
sends S into s x the first Stiefel-Whitney class of the two-fold cover spinx -+ Lx. 
We are therefore interested in the cohomology groups Hi(L, 21_2) where L is 
either of O(1,3), SO(l, 3) or SO+(1,3). Note that O(1,3) is topologically 
SO+(1, 3) x S x S O and that SO(l, 3) is topologically SO+(1,3) x S . 

Lernma 4. H 5 (SO+(1,3), 2~2) is isomorphic to Z2 with generator the 
first Stiefel-Whitney class of the ;V2-bundle Spin+(1,3)-~ SO+(1,3). 

Proof. We shall prove the slightly more useful result that H1(S0(3), ~_ 2) 
is isomorphic to ~2 with generator the Stiefel-Whitney class of the ;g2-bundle 
Spin(3) -~ SO(3). Recall that we can regard Spin(3) -~ SO(3) as the cover 
$3_~ Np3  The first Stiefel-g~itney class of the latter is non-trivial and can 
be taken as the generator. (It is the Stiefel-Whitney class of the canonical 
line bundle over RP 3 with total space N4 _ O.) Therefore because the 
inclusions Spin(3) -~ Spin+(1,3) and SO(3) -~ SO+(1, 3) commute with the 
covering maps and are homotopy equivalences the result follows. 

Corollary. HI(SO(l, 3), Z 2 ) ~  2~2(wi) 2 and Hi(O(1,3) ,  Z2) -~ 2~2(Wl) 4 
where in each case wl is the Stiefel-Whitney class of Spin+(1,3) -+ SO+(1, 3). 

Proof. One can regard the coverings Spin(l, 3 ) ~  SO(l, 3) and Pin(l, 3) 
0 (1 ,3 )  as respectively two and four copies of Spin+(1, 3) ~ SO+(1, 3) on 
the connected components of the spinor-groups, Pin(l, 3) being topologically 
Spin+(1,3) x S O x S O and Spin(l, 3) being Spin+(1,3) x S °. 
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We shall need the following lemma which reduces the calculation of the 
Spin+(1,3)-structures on the principal SO+(1, 3)-bundle of a space-time to 
the calculation of the Spin(0, 3)-structures on the reduction of the Lorentz 
bundle to SO(3). 

Lemma 5. An SO+(t, 3)-structure extends to a Spin+(1, 3)-structure iff 
the Spin+(l, 3)-structure reduces to a Spin(0, 3)-structure covering the 
canonical reduction of the SO+(1, 3)-structure to SO(3). 

Proof. The quickest way to see this is by looking at the Cech cohomotogy 
sets (Hirzebruch, 1966) H~ (X, G) of X in the constant presheaf G on X. 
Then corresponding to the commutative diagram (*) there is a Cech coho- 
mology ladder of Bockstein coefficient sequences, part of which is: 

,/7tl (X, Spin(O, 3)) PLY....+ /~1 (g, 80(3)) > 

I s~ 1 J• 
Hl(X, Spin+(1,3)) ~ I/I(X, SO+(1,3)) -+ 

The vertical arrows are ismorphisms because the inclusion maps J ,  J '  are 
homotopy equivalences. A principal bundle class w E/~/1 (X, SO+(1, 3)) 
extends to Spin+O , 3) iff w @ Im(p,) iff its canonical reduction to 
SO(3) : J , l (w)  lies in Im(p~), i.e. extends to Spin(0, 3) as the restriction of 
the Spin+O, 3)-structure to Spin(0, 3). 

The problem of finding necessary and sufficient conditions for a spin- 
structure to exist on an SO(n)-bundle is solved by the following theorem 
(Milnor, 1963) (see also Bichteler, 1967), which also calculates the number 
of Spin(n)-structures (if any) on an SO(n)-bundle. 

Theorem. A principal SO(n)-bundle on a compact manifold X extends 
to a Spin(n)-structure iff its second Stiefel-Whitney class w 2 E H e (X, Z z) 
is trivial. If w2 = 0, then the Spin(n)-structures covering the SO(n) are in 
one-to-one correspondence with the group H 1 (X, Z2). 

Proof. Suppose that b = p : E -~ X is a principal SO(n)-bundle on X. Then 
because the group SO(n) is path connected, the fibration is orientable (Bich- 
teler, 1967). (That is, the homotopy group has a trivial action on the fibres.) 
This means that one can extract the following exact sequence from the 
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! 
spectral sequence of b and the universal SO(n)-bundle b" = Pn: En -~ BSO(n): 

p~ 
O ' HI (x ,  7/2) ' HI(E,  7/2) 

f* 1 , 0 ~" HI(BSO(n), Y2) ~ H (E n, 7/2) 

i?~ Z 2) --~n H2(BSO(n), 7/2) -~ 

f :  X -+ BSO(n) is the classifying map of b : b -~ f*(bn). We need the follow- 
ing facts (i) H*(BSO(n), -g 2) is isomorphic to the 7/2 polynomial algebra with 
generators the universal Stiefet-Whitney classes Wi for i >~ 1 modulus the ideal 
generated by B,' t ; therefore H2(BSO(n), Z2) is generated by the universal 

• . 1 ¢ 1 Stiefel-Whitney class W2. (11) H (En, 7/2) = 0 because E n has zrk(En ) = 0 
for all k f> 0. In the diagram, the homomorphism i* is induced by the inclu- 
sion of a typical fibre into the total space of the bundle. Suppose that 
w C H 1 (SO(n), 7/:) is the generator of the group and represents the first 
Stiefel-Whitney class of the 7/z-bundle Spin(n) ~ S O 0 ) .  Then b is covered 
by a Spin(n)-bundle iff w E Im(i*) iff w c Ker(d*) i f f f*od*(w) = 0. But 
because H 1 (En,)7 2) = 0, d* is a monomorphism and therefore takes the 
generator w of HI(SO(n), 7/ z) into the generator W2 of H2(BOS(n), 772). 
Hence there is a Spin(n)-structure on b ifff*(W2) = wz( f*bn)  = wz(b) = O. 
Suppose that w2(b ) = 0, then the Spin(n)-structures covering b are in one-to- 
one correspondence with the WEHI(E ,  7/2) mapped into w by i*: therefore 
in one-to-one correspondence with ker(i*) (any two differ by an element of 
the kernel) and hence with Im(p*) ~ H 1 (X, 7/2). 

Corollary. A space-time X with SO+(1,3) structural group admits a 
Spin+(1,3)-structure iff w2(tx)  = O. 

Proof. By Lemma 5 the space-time admits a Spin+(1, 3)-structure iff its 
reduction to SO(3) admits a Spin(3)-structure iff w2(r~ ) = w2(tx)  = O. 

The formulation of spinor-structures in homotopy theoretic terms is the 
most convient one to lead to a physical interpretation (Clarke, 1971). Recall 
that the set of isomorphism classes of principal 7/2-bundles on a space X is 
in one-to-one correspondence with H 1 (X, 2g 2) = [X, B 212] and that the 
mapping ]f[@ [X, BZ 2] i---~ f , E rrl(X, xo) rh 7/2 establishes a further cor- 
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respondence with 7r 1 (X, Xo) th ~ 2. The latter correspondence is natural, 
therefore if i x : SO+(1,3)xo -~ SO+(1,3)(X) is the inclusion of a typical 
fibre into the total space of the Lorentz bundle, the following diagram 
commute s: 
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/x  
H1(SO+(1,3)(X),712) > ~rl(SO+(1,3)(X),b) ?~ 7]2 

HI(SO+(1,3)x, Z2) , nt(SO+(1,3)x,b) d~ 7/2 
Ix 

where I denotes the natural isomorphisms. Therefore there exists a class 
WE HI(so+(1, 3)(X), 2~ 2) with i*(W) = Wx the first Stiefel-Whitney class 
of Spin+(1 ,3)~  SO+(1,3) iff there exists a homomorphism zr 1 (SO+(1, 3), 
b) ~ ?72 such that i* eh l(P) = Foi* = F, where lPx is the characteristic 
homomorphism for Spin+(1,3)x ~ SO+(1,3)x defined as 1 respectively - 1  
on a loop class I o [ according to whether o lifts to a loop or an open curve 
in Spin+(1, 3). Because a 2zr rotation around any axis in Rx °'3 lifts to an open 
curve from e to - e ,  P x is defined by sending a generator into -1 .  (Note that 
in this case the homomorphisms i* are momomorphisms so that no 2zr 
rotation is null homotopic in the whole frame bundle.) 

The Aharanov-Susskind gedanken experiment (Aharanov & Susskind, 
1967; Hegerfeld & Kraus, 1968) is a theoretical design for an apparatus 
which could realise the characteristic homomorphism P of a spinor-structure 
on space-time. The apparatus would consist of two halves each containing 
some electronic system, the two halves being separated by a barrier through 
which there is a tunnelling current proportional to sin(a) where a is the 
relative phase of the electronic wave functions for each half of the apparatus. 
If the two halves are fitted together there is a current of +1 through the 
barrier. The two halves are then separated and one-half rotated through 2rr 
relative to the other in some frame. Because the electronic wave functions 
transform under the basic Spin(3) representation in C 2, corresponding to a 
projective representation of SO(3), a 2zr rotation changes the phase by a 
factor - 1 .  Thus when the apparatus is refitted together in its original con- 
figuration, the electronic wave functions in the two halves of the apparatus 
have relative phase - a  and a current o f - 1  flows in the barrier. Therefore 
via the above procedure the homomorphism I? x is realised at a space-time 
point x. A homomorphism lr 1 (SO+ (1,3)  (X), b) -~ 7] 2 can be constructed by 
the transport of the Aharanov-Susskind apparatus around loops in space-time 
based at the point under the basis b, keeping to the frame b and therefore 
describing loops in SO+(1,3) based at b. More precisely, the apparatus is first 
fitted together, the tunnelling current is measured and the two halves are 
separated and then one-half transported about one of the above loops in X. 
When the two halves are recombined the sign of the tunnelling current 
measures the number of 2zr relative rotations mod(2), defining P([ o [) = + 1 
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according to the rood(2) number of relative 2 rotations experienced along o. 
t-' obviously restricts to Px in each fibre. 

2.5. Topology of  Spinor Space-Times 
We next consider some results on the topology of spinor space and time- 

orientable space-times. Geroch (1968) proved that if a non-compact space 
and time-orientable space-time admits a Spin+(1, 3)-structure it must be 
the trivial one, that is, there must be a global section of the principal Spin+(l, 
3)-bundle covering the Lorentz bundle SO+(1, 3)(X). Therefore by projecting 
the section onto the Lorentz bundle via the spin covering map, one obtains a 
global section of the Lorentz bundle defining a paralMisation of the space- 
time. Geroch's method was essentially to generalise the usual obstruction 
theory for compact manifolds to non-compact manifolds. The obstruction to 
extending a cross-section off the q-skeleton of a CW-complex to the q + t 
skeleton can be represented as a cohomology class of Hq(X, 7rq_ 1 (F)) where 
F is the fibre of the fibration. Therefore for F = Spin+(1,3), which is homo- 
to~y equivalent to S 3, the only obstruction to finding a global section is in 
H (X, rr3(S3)) ---- Ha(X, 77). I f X  is oriented and non-compact, H4(X, 77) = O, 
so that there is no obstruction to a section. (Incidentally, this is just the 
method used to demonstrate that any compact, oriented three-manifold is 
paralMisable. For by a theorem of Wu if X is a compact oriented manifold of  
dimension -= 3 rood.(4), Wn- 1 = 0. Therefore for a three-manifold, w2 = 0 and 
the principal SO(3) frame manifold admits a Spin(3)-structure. Thus because 
S 3 is 2-connected, there is a global section of the spin-structure and hence a 
paralMisation. There is a similar theorem for oriented even dimensional com- 
pact manifolds (Massey, 1960). Thus for any compact space and time oriented 
space-time w 3 = 0.) 

A related result for compact spinor space-times is contained in the proof 
of a classic theorem of Rohlin (Milnor & Kervaire, 1958; Rohlin, 1958). Rohlin 
proved that any compact, orientabte four-dimensional spin-manifold and any 
point x of the manifold, the open submanifold X-x is parallelisable, that is, 
the manifold X is 'almost' parallelisable. The obstruction to extending the 
section from X-x to all of  X is defined as the homotopy class of  the restriction 
of the section to any boundary three sphere of  a closed four-disc (containing 
the point x in its interior) regarded as a map S 3 -+ SO(4). That is, the 
obstruction is an element of rr3(SO(4)). One can regard X as imbedded in 
s o m e  R m+4 for m large. That X is almost paralMisable means that for any 
x E X, the normal bundle N of X in R m + 4 is trivial when restricted to X-x. 
As above, the obstruction to extending the trivialisation to all of  X is an 
element of  the group 7r3(SO(m)). There is a homomorphism J : rr3(SO(m)) -+ 
7rm+3(S m) and the obstruction (which is an integer) can be shown to lie in 
ker(J). For large enough m, it can be shown that rrm+3(S m) is isomorphic to 
7724. Therefore the integer, which is shown to be half the Pontryagin number 
Pa (X) of X, is divisible by 24. And P1 (X) is divisible by 48. By a further result 
of Rohlin and Thorn (a special case of the Hirzebruch signature theorem 
(Hirzebruch, 1966)) the topological signature, sig(X), of X is divisible by 
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16. The latter result enables one to construct examples of oriented, time- 
oriented space-times with no spinor-stmcture (since there can be no Spin(4)- 
structure on the principal SO(4) frame bundle). The easiest examples come 
from 2k copies o f C P  2 for k < 8 which has signature 2k and Euler number 
6k. By adding 2k - 1 one handles to connected the manifold one reduces the 
Euler number to 2k + 2. By adding a further 2k + 1 one handles the Euler 
number is reduced to zero and signature is an oriented cobordism invariant 
and spherical modification preserves oriented cobordism class, the modified 
manifold is a space-time (trivial Euler number) of signature 2k ~ 0 rood(16) 
and can therefore admit no spinor structure. 

2.6. The Spin-Cobordism o f  Compact Space-Times 

In Whiston (1974) I noted that two compact, closed, oriented space-times 
are cobordant in the oriented sense (Strong, 1969) iff they have the same 
topological signature, therefore because the forgetful homomorphism from 
spin-cobordism classes (Anderson et al. 1967) to oriented cobordism classes 
is a monomorphism in dimension four, two compact oriented spinor space- 
times are spinor-cobordant (as Spin(4) manifolds) iff they have the same 
topological signature. The following relation generalises spin-cobordism. 

Definition. Two compact, closed Spin(n) manifolds (X 1, t)~ sl) and 
(X2, t~  s~) are called linearly spin-cobordant iffthere exists an oriented 
n + 1 m~nifold Z with a Spin(n)-bundle z +'s such that z+'Sl X1 = t )  sl 
and z+'SlX2 = tx; s~ on 00Z = X~ tA X~- where the complementary llne 
bundle on Z is inner normal on X 1 and exterior normal on X 2 . 

Linear spin-cobordism is an equivalence relation and there is a group 
M L-Spin  of linear spin-cobordism classes graded into subgroups of cobordism 
classes of  n-dimensional spin manifolds M L ' S p i n  . In the following lemma we 
compute the group of  cobordism classes of  compact spinor space-times 
regarded as Spin(4) manifolds. 

Lemma 6. Two compact spinor space-times are linearly spin-cobordant 
iff they are spin-cobordant. 

Proof Clearly two linearly spin-cobordant space-times must be spin- 
cobordant (if (Z, z), with z a Spin(4)-bundle is a linear spin-cobordism between 
two compact four-dimensional spin-manifolds, w2(z) = 0 implies that w2(tz) = 0 
and therefore that Z is a Spin(5)-manifold in such a way that the Spin(5)- 
structure on Z induces a spin-cobordism.) Conversely, suppose that two com- 
pact, four-dimensional, spin-manifolds of  Euter number zero are spin-cobordant. 
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Then there exists a compact five-dimensional spin-manifold Z such that 
0o Z+ = X~" W X~- and a Spin(5)-structure on t~ such that the interior normal 
trivialisation of the normal bundle on X 1 induces the Spin(4)-structure on 
tx~ and the exterior normal trivialisation of the normal bundle on X 2 induces 
the preassigned Spin(4)-structure on tx2. We next show that t z  splits off a 
trivial line bundle interior normal on X1 and exterior normal on X 2. To see 
this, suppose that N = X2xI is a closed collar of X 2 in Z and suppose that 
de~otes the manifold Z - (N - X2xO). Then ~ is diffeo to Z and therefore 
x(Z) = x(Z) = 0 because x(2Z) = 2x(Z) - x(X1) -- ×(X2) = 0 and x(X1) 
= x(X2) = 0. By the Poincarr-Hopf theorem (Milnor, 1965) Z and N admit 
one-frames interior oriented on the boundaries (respectively X[  U X~ and 
X~" U XO. By reversing the frame on N and gluing N to ~ along X 2 one 
obtains a one-frame field on Z interior normal on X1 and exterior normal on 
X 2. Suppose that z is the complementary oriented four-plane field on Z. Then 
z is tangent to 0Z and its orientation restricts to that of  t~  on X 1 and that 

-- 1 ± 
of tx2 on X 2. Moreover, because wz(tz)  = w2(z ) + Wl(Z ) .wl(z  ) = wz(z) = O, 
z admits a Spin(4)-structure on its orthogonal SO(4) frame bundle which, 
because of the spin-cobordism, restricts on X1 and X 2 to the preassigned 
spin structures. 

3. Bordism and Concordance o f  Lorentzian Structures 

The purpose of this section is primarily to report on some very recent 
work of Koschorke on tangent line bundles on compact manifolds which I 
interpret in terms of Lorentzian structures using Steenrod's theorem. Firstly, 
Koschorke defined a bordism relation between tangent line bundles which 
answers a question I posed (Whiston, 1974) on the cobordism of Lorentzian 
structures. We have to use the notion of bordism of maps (Conner & Floyd, 
1967) defined as a generalised homology theory. Fix a smooth manifold X. 
Then two smooth maps fo : Y0 -~ X and f l  : Y1 -~ X from (oriented) n-mani- 
folds Yo, Yl into the manifold X are called bordant iff there exists 
an (oriented) n + 1 manifold Z with (oriented) boundary Y~ U Yi- and a 
smooth map F:  Z -+ X restricting to fo, fa on the boundary OZ. The set of  
(oriented) bordism classes of maps from (oriented) manifolds into X forms a 
graded ring rift(X) (respectively ~2(X)) called the (oriented) bordism ring of  X 
graded by the subgroups ~rn (X) (respectively gZn(X)) of (oriented) bordism 
classes of maps of n-manifolds into X. 

Suppose that the pairs (X o, Lo) and (X l, L1) consist of  an oriented 
n-manifold and a tangent line bundle on the manifold. Then (X o, Lo) and 
(X1, L 1) are said to be bordant iff there exists an oriented n + 1 manifold Z 
with a tangent line bundle L such that 0o Z = X~ U X~- and L 1 X1 = L and 
L 1 X2 = L2. This bordism is an equivalence relation and there exist groups 
Mn(l ) of bordism classes of  tangent line bundles on oriented n-manifolds. 
Suppose that (Xo, Lo) and (Xa, L 1) are bordant tangent line bundles and 
that fo, 3¢'1 : Xo, Xl "+ B Z 2 are their classifying maps. Then fo and I"1 are 
bordant as maps into BZ2, i.e. define the same element of  ~2n(B712). This 
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defines a forgetful map Mn(1 ) -~ ~2n(B7/2). Note that two maps into B772, 
regarded as classifying maps o f  not necessarily tangent line bundles on the 
domain manifolds, are bordant iff the pull-back bundles extend to a line 
bundle on the manifold realising the bordism. Although the calculations (via 
a 'super' Poincar6-Hopf theorem and relative bordism groups) are on the 
whole straightforward, the result which interests us here is that there is a 
short-exact sequence: M4(1)~f-> g24(BZ2) x 2  ~g2 where ×2 sends a bordism 
class (X, f )  into x(X)mod(2) (X2 is well-defined because cobordant mani- 
folds have the same Euler numbers mod(2)). By a rather complicated geo- 
metrical argument, one can prove that ~2q(B2~2) -~ MSq°@M~q_ 2. Therefore 
because M~" = 0 (any two three-manifolds are cobordant in the unoriented 
sense), one can replace ~24(B7/2) in the above short-exact sequence by M s°  . 
This means that 3/4(1), the set o f  bordism classes o f  tangent line bundles on 
oriented four-manifolds, is isomorphic to ker(x2) which (as I pointed out in 
Whiston, 1974) is the group o f  oriented cobordism classes o f  four-manifolds 
of  Euler number zero. Therefore two tangent line bundles (X o, L0) and 
(X 1, L I) are bordant iff the manifolds X o and X1 are cobordant iff  sig(Xo +) 
= sig(X~. In particular, any two tangent line bundles on a given compact,  
orientable four-manifold are bordant and therefore any two oriented (and 
time-oriented) Lorentzian structures on a given space-time are cobordant. 

Suppose that L i and L 2 are two tangent line bundles on a manifold X. 
Koschorke calls L 1 and L 2 'concordant '  iff  there is a tangent line bundle L 
on X x I with L IX x 0 = L 0 and L [X x 1 = L1, and proves the following 
remarkable result: if X is an even dimensional, orientable and connected 
manifold o f  Euler number zero, there are 2 a(JO+l - 1 concordance classes of  
tangent line bundles on X where a(X) ~ dimz (Hi(X, Z2)). For a four- 
manifold o f  Euler number zero, 0 = Ni-o - -(-l~idimz~ (Hi( X, ][2)). Therefore 
if X is such that Hi(X, • 2) ~ Hi(X, ~-'2-) ~ 2~ 2, Poincar6 duality implies that 

Z2 
a(X) ~> 1 and therefore that there are at least three concordance classes of  
Lorentzian structures on X. 
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